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a b s t r a c t

This paper discusses the synchronization of three coupled chaotic FitzHugh–Nagumo (FHN) neurons

with different gap junctions under external electrical stimulation. A nonlinear control law that

guarantees the asymptotic synchronization of coupled neurons (with reduced computations) is

proposed. The developed control law incorporates the synchronization error between two slave

the slave neurons, which make the proposed scheme computationally more efficient. Further, a novel L2

gain reduction criterion has been developed for multi-input multi-output systems with non-zero initial

conditions, and is applied to robust synchronization of FHN neurons under L2 norm bounded distur-

bance and uncertainties. Furthermore, a robust adaptive nonlinear control law is developed, which is

capable of handling variations in nonlinear part of synchronization error dynamics, without using any

neural-network-based training-oriented adaptive scheme. The proposed control schemes ensure global

synchronization with computational simplicity, easy way of design and implementation and avoiding

extra measurements. The results obtained with the proposed control laws are verified through

numerical simulations.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Dynamic behavior of neuron is widely studied to explore the
chief role of neuronal spiking for effective neurotransmission and
brain signal processing [1–5]. External electrical stimulation
(EES), like deep brain stimulation, is a therapy for cognitive
disorders such as Parkinson’s disease, epilepsy and dystonia [6].
Synchronization of chaotic neurons under external stimulation
plays a major role in the transmission of neural signals and
enables efficient communication between the brain and the
muscles [7,8]. Investigation of neuronal synchronization, for key
understanding of the neural circuit functioning and the brain
information processing, has become one of the widely studied
problems in the field of neuroscience [9–12]. It has attracted
many brain researchers over the past decade in order to under-
stand the underlying mechanism of external stimulation and
hence to improve the stimulation therapy based treatments for
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cognitive diseases. FitzHugh–Nagumo (FHN) neural model, under
sinusoidal electrical stimulation, is widely utilized for the syn-
chronization study due to its potential ability of representing
dynamical aspects of neurons [13–15].

Researchers have used various control strategies for synchro-
nization of different models of neural networks without gap
junctions [14–16]. Gap junctions are protein channels by which
neurons communicate with each other [10,17–19]. Incorporation
of the strength of gap junctions into the dynamics of coupled
chaotic FHN neurons renders derivation of a control law for their
synchronization difficult [20–22]. Some researchers have incor-
porated gap junctions for studying the behavior of two coupled
chaotic neurons [23], and, in fact, various control strategies have
been used for synchronization of two chaotic neurons with gap
junctions. For instance in [20,21], synchronization has been
achieved by canceling the gap junction terms present in FHN
neuron dynamics, which cannot be possible due to variation in
the strength of gap junctions. Moreover, the control laws reported
recently for two neurons with gap junctions [20,21] are compu-
tationally complex. Two control inputs have been utilized for a
single slave neuron, which is not applicable in reality, making the
technique [20] still more conservative.

Dynamical behavior, network architecture and synchroniza-
tion of multiple interacting chaotic FHN neurons with gap junc-
tions have been although addressed in the literature [18,24], but
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still, the development of control strategies for synchronization of
multiple coupled chaotic FHN neurons with different and uncer-
tain gap junctions remained elusively rare up to this date.
Synchronization of multiple interlinked chaotic neurons with
different and uncertain gap junctions is challenging due to their
inherently complex coupling. Nonetheless, development of a
control law for synchronization of a network of FHN neurons is
tantalizingly attractive owing to its potential utility for restora-
tion of effective neuro-system communication under EES. Most
recently, synchronization of multiple oscillators has been dis-
cussed in [25], but much detailed work remains to be done.

In this paper, we address the issue of synchronization of three
coupled chaotic FHN neurons with gap junctions, by applying
nonlinear, robust and robust adaptive control strategies. A novel
L2 gain reduction criterion for systems with non-zero initial
conditions has been developed and applied to synchronize FHN
neurons under L2 norm bounded disturbance. As gap junctions
represent the properties of the medium between any two
connected neurons, which differ for each of the connection, we
take different and uncertain gap junctions between any two
interlinked FHN neurons and ensure robust synchronization of
uncertain chaotic neurons. The proposed control schemes are
computationally more efficient than the results reported in [20–22],
and utilize a single control input for each of the slave neurons.
Moreover, consideration of controller design without canceling
the gap junction terms makes the proposed strategies less con-
servative than the conventional methods. Our schemes consider
synchronization of three FHN neurons, which is helpful for
synchronization of a network of FHN neurons with known neural
connections.

In order to deal with model variations associated with non-
linear part of neural dynamics, a computationally efficient robust
adaptive control law has also been developed (see also [26–30]).
This robust adaptive control strategy guarantees asymptotic
synchronization of three interconnected FHN neurons and
ensures the L2 gain reduction from disturbance to synchroniza-
tion error. The proposed control schemes are utilizing linear
matrix inequalities (LMI’s) for computing large matrices in order
to reduce parameter tuning efforts [31–34]. The main contribu-
tion of this paper is described below:
(1)
 This paper proposes a novel L2 gain reduction criterion from
input to output of a multi-input multi-output (MIMO)
continuous-time system with non-zero initial condition and
provides its application for synchronization of chaotic FHN
neurons under disturbance. The alternative l2 gain reduction
criterion for discrete-time systems is also reported.
(2)
 This paper describes nonlinear, robust and robust adaptive
control schemes for synchronization of three coupled chaotic
FHN neurons with uncertain and different strengths of gap
junctions. This work provides an understanding of issues for
synchronization of multiple FHN neurons.
(3)
 The proposed control strategies are computationally efficient,
global, easy to design and implement, avoid extra measure-
ments and reduce parameter tuning efforts, hence suitable for
implementation.
Simulation results that validate the proposed methodology are
also presented. This work can be a step towards the synchroniza-
tion control of a network of coupled FHN neurons with uncertain
and different strengths of gap junctions.

This paper is organized as follows. Section 2 provides the
L2 and l2 gain reduction criteria for MIMO systems with non-zero
initial conditions. Section 3 presents the FHN model of three
neurons coupled with different and uncertain gap junctions.
Section 4 demonstrates the computationally efficient nonlinear
and robust nonlinear control laws for synchronization of cou-
pled neurons. Section 5 discusses the proposed robust adap-
tive nonlinear control law for neuronal synchronization along
with the pertinent simulation results. Section 6 draws the
conclusions.

Notations: We use standard notations. The L2 norm of a vector
d(t) is represented by

:dðtÞ:2 ¼

Z 1
0

:dðtÞ:2
dt

� �1=2

,

where :d(t): represents the Euclidean norm of d(t) and t repre-
sents time. The L2 gain from a vector d(t) to another vector z(t) is
represented by sup:d:2 a0ð:zðtÞ:=:dðtÞ:2Þ. For discrete-time sys-
tems, the l2 norm of a vector d(n) is represented by

:dðnÞ:l2 ¼
Xt ¼ 1
t ¼ 0

:dðnÞ:2

 !1=2

,

where n denotes the nth sample; and the l2 gain from a vector
d(n) to another vector z(n) is represented by sup:d:l2 a0ð:zðnÞ:l2=

:dðnÞ:l2Þ. Identity and null matrices of appropriate dimensions are
represented by I and O, respectively.
2. L2 and l2 gain reduction criteria

Many physical systems are affected by disturbances and noises
that can be bounded in L2 norm sense. The main objective, for
stabilization, regulation, tracking and synchronization of physical
systems is to minimize the effect of L2 norm bounded distur-
bances and noises at output. However, the traditional L2 gain
reduction criteria [35–37], from input to output of a system,
are based on the supposition of zero initial condition. The aim of
this section is to provide a novel L2 gain reduction criterion from
input to output of general MIMO continuous-time control sys-
tems having non-zero initial conditions. Additionally, due to
significance of discrete-time control systems, the counterpart
of this criterion in terms of l2 gain reduction has also been
presented.

Consider a general class of continuous-time MIMO systems
given by

_s ¼ f ðs,w,t,tÞ, z¼ gðs,w,t,tÞ ð1Þ

where s(t)ARm, w(t)ARp and z(t)ARq represent the vectors for
state, input and output, respectively; f(s,w,t,t)ARm and g(s,w,t,t)A
Rq. Here, t and t represent time and time-delay, respectively. Note
that the delay t can also be zero for systems without time-delay.
We take the following assumption:

Assumption 1. The L2 norm of input w is bounded by wm, that is
:w:2rwm, where wm is a positive scalar.

To address the L2 gain reduction from input to output of a
MIMO system (1) with any initial condition, we introduce the
following important lemma.

Lemma 1. Consider the system (1) satisfying Assumption 1. Suppose

that there exists a Lyapunov function E(s,t)40 (or E(s,t,t)40) such

that

_Eðs,tÞþzT z�g2wT wo0, ð2Þ

where g40 is a scalar. Then, the following are ensured.
(i)
 The system (1) is asymptotically stable if w(t)¼0.
(ii)
 The output z satisfies :zðtÞ:2

2o ðg
2þðEðs,0Þ=w2

mÞÞ:wðtÞ:2

2 , if

w(t)a0. In other words, the L2 gain from w(t) to z(t) is less

than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þðEðs,0Þ=w2

mÞ
p

.
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Proof. If _Eðs,tÞþzT z�g2wT wo0, then the following two cases
hold:
(a)
 If w(t)¼0, then _Eðs,tÞþzT zo0, which implies that _Eðs,tÞo0.
Hence the system (1) is asymptotically stable.
(b)
 If w(t)a0, then, integrating (2) from 0 to To-N, we get

lim
To-1

ðEðs,ToÞ�Eðs,0ÞÞþ

Z To

0
zT z dt�g2

Z To

0
wT w dt

� �
o0: ð3Þ
As E(s,To)40, (3) implies

:z:2

2�g
2:w:2

2�Eðs,0Þo0, ð4Þ

which can be written as

ð:z:2

2=:w:2

2Þ�g
2�ðEðs,0Þ=:w:2

2Þo0 ð5Þ

Using :w:2rwm, we get

ð:z:2

2=:w:2

2Þ�g
2�ðEðs,0Þ=w2

mÞo0, ð6Þ

which implies that :zðtÞ:2

2oðg
2þðEðs,0Þ=w2

mÞÞ:wðtÞ:2

2. Hence, the

L2 gain from input w(t) to output z(t) is less thanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þðEðs,0Þ=w2

mÞ
p

, which completes the proof of Lemma 1. Note

that (6) also implies

ð:z:2

2=:w:2

2Þ�g
2�ðEðs,0Þ=w2

mÞ�2g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðs,0Þ=w2

m

q
o0, ð7Þ

which states that the L2 gain from w(t) to z(t) is also less than

ðgþ
ffiffiffiffiffiffiffiffiffiffiffiffi
Eðs,0Þ

p
=wmÞ. &

Remark 1. In the past (for instance, see [35–38]), a large number

of research papers used inequalities like _Eðs,tÞþzT z�g2wT wo0
for stabilization, regulation, tracking and synchronization of
linear, nonlinear, continuous-time, discrete-time and time-delay
systems, assuming s(0)¼0 (or s(t�t)¼0, 8trt, for time-delay
systems). It ensures that the L2 gain from w(t) to z(t) is less than g.

However, Lemma 1 shows that the inequality _Eðs,tÞþzT z�g2wT

wo0, providing the L2 gain from w(t) to z(t) less thanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þðEðs,0Þ=w2

mÞ
p

, is also well-applicable for MIMO systems (1)

with non-zero initial conditions. The results proposed by Lemma
1 are more general, because if E(s,0)¼0 (corresponding to
s(0)¼0), the upper bound on L2 gain from w(t) to z(t) becomes
g. It is interesting to note that the L2 gain also depends on the
initial condition of a system because E(s,0) depends on s(0).

Remark 2. The minimization of the effect of input w(t) at output

z(t) can be achieved by minimizing the L2 gain
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þðEðs,0Þ=w2

mÞ
p

or ðgþ
ffiffiffiffiffiffiffiffiffiffiffiffi
Eðs,0Þ

p
=wmÞ, which requires the minimization of g and

E(s,0). Here, the minimization of E(s,0) depends on the selection of
a Lyapunov function. For most frequently used quadratic Lyapu-
nov function E(s,t)¼sT(t)Ps(t) with P¼PT40, we can introduce a

new inequality sT ð0ÞPsð0ÞrmsT ð0Þsð0Þ with scalar m40 and mini-
mize E(s,0) by minimizing m. If the bound wm and s(0) are known,

then
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þðmsT ð0Þsð0Þ=w2

mÞ
p

can be minimized to obtain the

optimal value of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þðsT ð0ÞPsð0Þ=w2

mÞ
p

, otherwise a weighted

combination of g (or g¼ g2) and m can be used for optimization.
We suggest to use more weight for g (or g) in optimization
because m is associated with the Lyapunov function that has to
satisfy other constrains like stability, convergence rate, perfor-
mance and robustness. It is also worth mentioning that if initial
condition s(0) is not exactly known, then we can introduce a
bound on initial condition. For instance, the upper bound on the

L2 gain becomes
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þZ=w2

m

p
if we confine the initial condition

within an ellipsoid s(0)AsT(0)Ps(0)rZ for a positive scalar Z.
In discrete-time systems, the l2 gain reduction from input to
output is used for minimizing the effects of unwanted noises
and disturbances (for example, see [38]). Now, we provide the
counterpart of Lemma 1 due to wide applicability of the l2 gain
reduction in discrete-time control systems. Consider the MIMO
discrete-time system given by

sðnþ1Þ ¼ f ðs,w,nÞ, zðnÞ ¼ gðs,w,nÞ: ð8Þ

Assumption 2. The l2 norm of input w(n) is bounded by a positive
scalar wm, that is :wðnÞ:l2rwm.

Lemma 2. Consider the system (8) satisfying Assumption 2. Suppose

that there exists a Lyapunov function E(s,n)40 such that

Eðsðnþ1Þ,nþ1Þ�EðsðnÞ,nÞþzT z�g2wT wo0, ð9Þ

where g40 is a scalar, then the following are ensured:
(i)
 The system (8) is asymptotically stable, if w(n)¼0.

(ii)
 The output z satisfies :zðnÞ:2

l2o ðg
2þðEðs,0Þ=w2

mÞÞ:wðnÞ:2

l2 , if

w(n)a0. That is, the l2 gain from w(n) to z(n) is less thanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þðEðs,0Þ=w2

mÞ
p

.

Proof. If (9) holds, then the following two cases hold:
(a)
 If w(n)¼0, then E(s(nþ1),nþ1)�E(s(n),n)o0. It implies that
the system (8) is asymptotically stable.
(b)
 If w(n)a0, then, summing (9) from 0 to N, we get

lim
N-1

EðsðNÞ,NÞ�Eðsð0Þ,0Þþ
XN�1

n ¼ 0

zT z�g2
XN�1

n ¼ 0

wT w

 !
o0: ð10Þ
Using a similar procedure as for the proof of Lemma 1, we get

ð:z:2

l2=:w:2

l2Þ�g
2�ðEðs,0Þ=w2

mÞo0: ð11Þ

Hence the l2 gain from w(n) to z(n) is less than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þðEðs,0Þ=w2

mÞ
p

,

which completes the proof of Lemma 2. For l2 gain optimization,
the same method described by Remark 2 can be used. &

3. FHN model description

Consider the following model of three coupled chaotic FHN
neurons [18,39] with different gap junctions:

dx1

dt
¼ x1ðx1�1Þð1�rx1Þ�y1� ~g12ðx1�x2Þ� ~g13ðx1�x3Þ

þða=oÞcosotþd1,

dy1

dt
¼ bx1, ð12Þ

dx2

dt
¼ x2ðx2�1Þð1�rx2Þ�y2� ~g12ðx2�x1Þ� ~g23ðx2�x3Þ

þða=oÞcosotþd2,

dy2

dt
¼ bx2, ð13Þ

dx3

dt
¼ x3ðx3�1Þð1�rx3Þ�y3� ~g13ðx3�x1Þ� ~g23ðx3�x2Þ

þða=oÞcosotþd3,

dy3

dt
¼ bx3, ð14Þ

where x and y represent the state variables of a neuron represent-
ing the activation potential and the recovery voltage, respec-
tively; x1 and y1 are the states of the master FHN neuron, x2 and y2

are the states of the first slave FHN neuron, and x3 and y3 are the
states of the second slave FHN neuron. Here ~g12, ~g13 and ~g23
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represent the strengths of gap junctions between the master
and the first slave neurons, between the master and the second
slave neurons, and between the two slave neurons, respectively.
Disturbances at the master, the first slave and the second slave
neurons are represented by d1, d2 and d3, respectively. The term
ða=oÞcosot represents the external stimulation current with time
t and angular frequency o. In the present study, we use the
angular frequency o and the amplitude a as dimensionless
quantities as specified for FHN model [21,30,39].

Traditionally, researchers have considered the synchronization
of identical neurons (for example, see [14–20,22–24]); however,
these coupled neurons can in no way be identical. If slight
differences in the strengths of gap junctions ( ~g12, ~g13 and ~g23)
are accounted, the coupled neurons (12)–(14) are not completely
identical. Additionally, the parameters representing the strengths
of gap junctions are uncertain due to the property variations of
the medium between interlinked neurons. As synchronization of
neurons is affected by the properties of gap junctions, we consider
robust synchronization of FHN neurons under different and
uncertain parameters ( ~g12, ~g13 and ~g23). Due to these facts, the
model (12)–(14), in contrast to [18], has different and uncertain
parameters ( ~g12, ~g13 and ~g23) for each of the linkages among the
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three neurons. We take

~g12 ¼ g12þDg12, ~g13 ¼ g13þDg13, ~g23 ¼ g23þDg23, ð15Þ

where g12, g13 and g23 represent the nominal values and Dg12,
Dg13 and Dg23 represent the uncertainties in strengths of gap
junctions. We fix the parameters of the model as

r¼ 10, g12 ¼ 0:011, g13 ¼ 0:012, g23 ¼ 0:013,

o¼ 0:254p, b¼ 1 and a¼ 0:1, ð16Þ

and the initial condition as

x1ð0Þ ¼ 0, y1ð0Þ ¼ 0, x2ð0Þ ¼ 0:3, y2ð0Þ ¼ 0:3,

x3ð0Þ ¼�0:3 and y3ð0Þ ¼ �0:3: ð17Þ

Fig. 1 shows state-space plots of the three coupled chaotic FHN
neurons under zero uncertainties and disturbances (see also
[18,39]). Note that all three neurons are non-synchronous since
the plots in Fig. 1(d)–(i) do not make straight lines of slope 1
passing through the origin.

To synchronize three FHN neurons, we use two control inputs
u1 and u2 for the first and second slave neurons, respectively. The
coupled nonlinear model (12)–(14) with two control inputs is,
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then, given by

dx1

dt
¼ x1ðx1�1Þð1�rx1Þ�y1� ~g12ðx1�x2Þ� ~g13ðx1�x3Þ

þða=oÞcosotþd1,

dy1

dt
¼ bx1, ð18Þ

dx2

dt
¼ x2ðx2�1Þð1�rx2Þ�y2� ~g12ðx2�x1Þ� ~g23ðx2�x3Þ

þða=oÞcosotþu1þd2,

dy2

dt
¼ bx2, ð19Þ

dx3

dt
¼ x3ðx3�1Þð1�rx3Þ�y3� ~g13ðx3�x1Þ� ~g23ðx3�x2Þ

þða=oÞcosotþu2þd3,

dy3

dt
¼ bx3: ð20Þ

The goal of the present study is to design proper control
signals u1 and u2 for synchronization of both the slave neurons
with the master neuron.
4. Robust nonlinear control

This section describes a nonlinear state feedback control law
for synchronization of three FHN neurons (18)–(20), by selecting
control signals u1 and u2 to achieve x2,x3-x1 and y2,y3-y1.
A robust nonlinear synchronization control law has also been
developed against model uncertainties and disturbances. The
proposed control law for synchronization of three coupled chaotic
FHN neurons is given by

u1 ¼ Coðx1�x2Þ�ðð1þrÞx2
2�rx3

2Þþðð1þrÞx2
1�rx3

1Þ, ð21Þ

u2 ¼ Coðx1�x3Þ�ðð1þrÞx2
3�rx3

3Þþðð1þrÞx2
1�rx3

1Þ, ð22Þ

where Co is a constant to be determined. Similar to [40], two
linear feedback terms Co(x1�x2) and Co(x1�x3) are used to ensure
the convergence of the states of two slave neurons to the state of
the master neuron; while nonlinear feedback terms ðð1þrÞx2

1�

rx3
1Þ, ðð1þrÞx2

2�rx3
2Þ and ðð1þrÞx2

3�rx3
3Þ are used to cancel the

nonlinear terms in synchronization error dynamics, which will
be discussed later. Now we provide a sufficient condition for
synchronization of the three FHN neurons (18)–(20) using control
laws (21) and (22) in the absence of uncertainties and
disturbances.

Theorem 1. Consider the coupled FHN neurons under d1¼d2¼d3¼

0 and Dg12¼Dg13¼Dg23¼0. The nonlinear control laws ensure the

asymptotic synchronization of three neurons if the following matrix

inequalities are satisfied:

P40, AT PþPAo0, ð23Þ

where

A¼

�ð1þCoþ2g12Þ �g13 g23 �1 0 0

�g12 �ð1þCoþ2g13Þ �g23 0 �1 0

g12 �g13 �ð1þCoþ2g23Þ 0 0 �1

b 0 0 0 0 0

0 b 0 0 0 0

0 0 b 0 0 0

2
666666664

3
777777775

,

ð24Þ

and PAR6�6 is a symmetric matrix.
Proof. Incorporating (21) and (22) into (19) and (20), the
overall closed-loop system becomes

dx1

dt
¼ x1ðx1�1Þð1�rx1Þ�y1� ~g12ðx1�x2Þ� ~g13ðx1�x3Þ

þða=oÞcosotþd1,

dy1

dt
¼ bx1, ð25Þ

dx2

dt
¼
�rx3

1þð1þrÞx2
1�x2�y2� ~g12ðx2�x1Þ

� ~g23ðx2�x3Þþða=oÞcosotþCoðx1�x2Þþd2

( )
,

dy2

dt
¼ bx2, ð26Þ

dx3

dt
¼
�rx3

1þð1þrÞx2
1�x3�y3� ~g13ðx3�x1Þ

� ~g23ðx3�x2Þþða=oÞcosotþCoðx1�x3Þþd3

( )
,

dy3

dt
¼ bx3: ð27Þ

The following synchronization errors are taken into account.

e1 ¼ x1�x2, e2 ¼ x1�x3, e3 ¼ x2�x3, ð28Þ

e4 ¼ y1�y2, e4 ¼ y1�y2 and e6 ¼ y2�y3: ð29Þ

The purpose of control laws (21) and (22) is to ensure the
convergence of synchronization errors (28) and (29) to zero for a
proper selection of Co. The derivatives of the error terms in (28) and
(29) along (25)–(27) yield the synchronization error dynamics:

de1

dt
¼�ð1þCoþ2 ~g12Þe1� ~g13e2þ ~g23e3�e4þd1�d2, ð30Þ

de2

dt
¼� ~g12e1�ð1þCoþ2 ~g13Þe2� ~g23e3�e5þd1�d3, ð31Þ

de3

dt
¼ ~g12e1� ~g13e2�ð1þCoþ2 ~g23Þe3�e6þd2�d3, ð32Þ

de4

dt
¼ be1, ð33Þ

de5

dt
¼ be2, ð34Þ

de6

dt
¼ be3, ð35Þ

which can be rewritten in the state space form as

de

dt
¼ AeþDAeþB ~d, ð36Þ

where

e¼ e1 e2 e3 e4 e5 e5
� �T

, ð37Þ

DA¼
DA11 O

O O

� �
, ð38Þ

DA11 ¼

�2Dg12 �Dg13 Dg23

�Dg12 �2Dg13 �Dg23

Dg12 �Dg13 �2Dg23

2
64

3
75, ð39Þ

B¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

2
64

3
75

T

, ð40Þ

~d ¼ d1�d2 d1�d3 d2�d3
� �T

, ð41Þ

and A has been already defined in (24). From (36), it is clear that the
synchronization error dynamics is linear, due to the cancelation of



(ii)
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the nonlinear terms in the model with those in the control law. Now
consider the following quadratic Lyapunov function candidate:

Eðe,tÞ ¼ eTgPe, ð42Þ

where P40, and we take g¼1 for the present case. The derivative of
(42) along (36) becomes

_Eðe,tÞ ¼ eTgðAT PþPAÞeþeTgðDAT PþPDAÞeþgeT PB ~dþg ~d
T
BT Pe:

ð43Þ

Using ~d ¼ 0, DA¼0 and g¼1, and ATPþPAo0, _Eðe,tÞo0 is con-
cluded, which completes the proof of Theorem 1. &

Remark 3. The proposed control laws (21) and (22) are much
simpler than that in [20–22], as it does not include the gap
junctions and terms like y1�y2 and y1�y3, among others. More-
over, only a single control input is used for each slave neuron to
achieve a computationally efficient control law. Furthermore, this
control law does not require extra measurements of recovery
voltages. Such a control law is advantageous for real-time
synchronization of multiple chaotic coupled FHN neurons.

Remark 4. In the literature [14–16,19–22,25,30,31], synchroni-
zation errors only between the master and slave neurons were
considered. In the present scenario, however, the synchronization
errors between two slave neurons (e3, e6) are considered in
addition to those between the master and the slave neurons (e1,
e2, e4 and e5). Note that the convergence of e1, e2, e4 and e5 to zero
ensures the convergence of e3 and e6. This implies that e3 and e6

should not be considered in (28) and (29) as synchronization
errors. However, if in the control law derivation, state differences
in slave neurons (e3, e6) are not used, one has to incorporate
redundant terms in control signals (21) and (22) for cancelation of
terms g23e3, �g23e3 and �e6 present in (30)–(32). Hence, for the
synchronization of multiple neurons, it is vital to consider the
synchronization errors between the states of any two slave
neurons for obtaining a simple controller with less computational
complexity.

The main problem for synchronization of chaotic systems
under L2 disturbance is that the initial condition cannot be zero
(that is, e(t)a0 at t¼0), while the traditional controller design
techniques are based on the assumption e(0)¼0. This problem
can be resolved by applying Lemma 1. To address the robust
synchronization of FHN neurons under disturbance and uncer-
tainty, we take the following assumptions:

Assumption 3. The L2 norm of disturbance ~d is bounded as
: ~d:2r

~dm, where ~dm is a positive scalar.

Assumption 4. The uncertain terms Dg12, Dg13 and Dg23 are
bounded as 9Dg129ogm, 9Dg139ogm and 9Dg239ogm, where gm

is a positive scalar.

Now, by virtue of Lemma 1, we provide a sufficient condition

for robust synchronization of three FHN neurons (18)–(20) under

bounded disturbance and parametric uncertainties.

Theorem 2. Consider the three coupled FHN neurons satisfying

Assumption 3-4. Suppose the optimization problem:

minc1gþc2m
such that

P¼ PT 40, PomI, g40, e40, ð44Þ

c¼

AT PþPAþeM PB I P

n �g 0 0

n n �g 0

n n 0 �e

2
6664

3
7775o0, ð45Þ
with

M¼
M11 O

O O

� �
, ð46Þ

M11 ¼ g2
m

6 3 �3

3 6 3

�3 3 6

2
64

3
75, ð47Þ

where m, g and e are scalars, P is a symmetric matrix and scalars c1

and c2 are the optimization weights. The nonlinear control laws

ensure the following:
(i)
 Asymptotic synchronization of the FHN neurons, if ~d ¼ 0 .
The L2 gain from ~d to e is less than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þðgeð0ÞT Peð0Þ= ~d

2

mÞ

q
.

Proof. Consider the following inequalities:

Eðe,tÞ ¼ eTgPeogmeT e, ð48Þ

_Eðe,tÞþeT e�g2 ~d
T ~do0: ð49Þ

Here (48) ensures PomI. By application of Lemma 1 for

Lyapunov function (42), the inequality (49) ensures asymptotic

synchronization of FHN neurons if ~d ¼ 0 and the L2 gain from ~d to

e is less than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þðgeð0ÞT Peð0Þ= ~d

2

mÞ

q
. Using (43) into (49), we get

eT ðAT PþPAÞeþeT ðDAT PþPDAÞeþeT PB ~d

þ ~d
T
BT Peþg�1eT e�g ~d

T ~do0: ð50Þ

Using (38), (39), (46), (47) and Assumption 4, it is trivial to obtain

DATDA¼
DAT

11DA11 O

O O

" #
rM, ð51Þ

due to the specific structure of DA in (38) and (39). For any scalar

e40 and using (51), we obtain

DAT PþPDAreDATDAþe�1P2reMþe�1P2: ð52Þ

Incorporating (52) into (50), we get

eT ðAT PþPAþeMþe�1P2þg�1IÞeþeT PB ~d

þ ~d
T
BT Pe�g ~d

T ~do0, ð53Þ

which is equivalent to

AT PþPAþeMþe�1P2þg�1I PB

n �g

" #
o0: ð54Þ

By applying the Schur complement [41,42], we obtain the

matrix inequalities (44) and (45), which complete the proof of

Theorem 2 &.

5. Robust adaptive control

In the previous section, a nonlinear robust control law, based on
cancelation of nonlinear terms in synchronization error dynamics,
has been developed. However, due to uncertainty in the nonlinear
part of FHN neurons, exact cancelation cannot be possible. This
section addresses a robust adaptive control law to ensure synchro-
nization of neurons under uncertainty in the nonlinear part of neural
dynamics, in addition to L2 bounded disturbance and uncertainties
in gap junctions. The classical way of dealing with the nonlinear part
uncertainty is to develop a control law by considering whole
nonlinear function as an uncertainty. For instance, the adaptation
law [22], approximating whole nonlinear function using a neural-
network-based approach, is however computationally complex due
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to the use of a number of neural nodes. Moreover, such synchroni-
zation techniques, requiring additional software for training of the
neural networks, are capable to provide the local synchronization
due to the use of local approximation of nonlinear functions. The
other less conservative way is to adapt uncertain parameter r

present in the nonlinear part of FHN neurons (see [43–45]). In this
section, we present a computationally simpler continuous-time
robust adaptive control law ensuring global synchronization of three
FHN neurons. The proposed control law is given by

u1 ¼ Coðx1�x2Þ�ðð1þ r̂Þx2
2�r̂x3

2Þþðð1þ r̂Þx2
1�r̂x3

1Þ, ð55Þ

u2 ¼ Coðx1�x3Þ�ðð1þ r̂Þx2
3�r̂x3

3Þþðð1þ r̂Þx2
1�r̂x3

1Þ, ð56Þ

where r̂ is a time varying adaptive parameter of the proposed
control law.

Assumption 5. The parameter r is bounded by a positive value rm.
That is

9r9orm: ð57Þ

The adaptation law for r̂ is given by

_̂r¼�0:5ðeT PFðxÞþFT ðxÞPeÞS, ð58Þ

where S is a positive scalar, and

FðxÞ ¼ f1 f2 f3 0 0 0
h iT

, ð59Þ

with

f1 ¼ ðx
2
2�x3

2�x2
1þx3

1Þ, ð60Þ

f2 ¼ ðx
2
3�x3

3�x2
1þx3

1Þ, ð61Þ

f3 ¼ ðx
2
3�x3

3�x2
2þx3

2Þ: ð62Þ

Theorem 3. Consider the three coupled FHN neurons satisfying

Assumptions 3–5. Suppose the following optimization problem:

min c1gþc2m
such that

P40, PomI, ð63Þ

g40, e40, co0, ð64Þ

where m, g and e are scalars, P is a symmetric matrix and scalars c1

and c2 are the optimization weights. The nonlinear control law along

with the adaptation law (58) ensures the following:
(i)
(ii)
Asymptotic synchronization of the FHN neurons, if ~d ¼ 0 .ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

The L2 gain from ~d to e is less than g2þðgeð0ÞT Peð0Þ= ~d

2

mÞ .
Proof. Incorporating the control law (55) and (56) into (19) and
(20), the closed-loop system becomes

dx1

dt
¼�rx3

1þð1þrÞx2
1�x1�y1� ~g12ðx1�x2Þ� ~g13ðx1�x3Þ

þða=oÞcosotþd1,

dy1

dt
¼ bx1, ð65Þ

dx2

dt
¼�r̂x3

1þð1þ r̂Þx2
1�ðr�r̂Þx3

2þðr�r̂Þx2
2�x2�y2� ~g12ðx2�x1Þ

� ~g23ðx2�x3Þþða=oÞcosotþCoðx1�x2Þþd2,

dy2

dt
¼ bx2, ð66Þ
dx3

dt
¼�r̂x3

1þð1þ r̂Þx2
1�ðr�r̂Þx3

3þðr�r̂Þx2
3�x3�y3� ~g23ðx3�x1Þ

� ~g23ðx3�x2Þþða=oÞcosotþCoðx1�x3Þþd3,

dy3

dt
¼ bx3: ð67Þ

Using the same procedure as in the previous section, synchro-

nization error dynamics for this case becomes

de

dt
¼ AeþDAeþFðxÞðr̂�rÞþB ~d: ð68Þ

Consider the following Lyapunov function candidate [32,33]:

E¼ eTgPeþðr̂�rÞ2gS�1, ð69Þ

with g40, P40 and S40. Taking the derivative of (69) along

(68), we obtain

_Eðe,tÞ ¼ gðeT ðAT PþPAÞeþeT ðDAT PþPDAÞeþeT PB ~dþ ~d
T
BT Pe

þeT PFðxÞðr̂�rÞþFT ðxÞPeðr̂�rÞþ2ðr̂�rÞ_̂rS�1Þ: ð70Þ

Choosing eT PFðxÞþFT ðxÞPeþ2_̂rS�1 ¼ 0 from the adaptation law

(58) and (70) reduces to (43). Further using the same steps as in

the proof of Theorem 2. we obtain the matrix inequalities (63)

and (64), which complete the proof of Theorem 3. &

Remark 5. The proposed adaptation law (58) does not use any
kind of neural networks. Hence, there is no training required, in
contrast to [22]. Moreover, the proposed control law (55) and (56)
and adaptation law (58) are computationally simpler than [22].
This makes the proposed control strategy suitable and indeed
advantageous for practical implementation.

Remark 6. The approaches developed in the present study are
global and based on the solution of LMI’s for a proper selection of
controller parameter Co. In contrast to [15,22], the selection of
large matrices can be made easily using LMI-based tools. It
becomes necessary to use such LMI tools for selection of large
matrices like P when dealing with synchronization of multiple
coupled FHN neurons.

Remark 7. In [22], the robust adaptive technique developed for
synchronization of two neurons separated by gap junctions is
based on the convergence of synchronization errors within a
small region rather than to zero, even for zero disturbance. The
adaptive control proposed in the present work is less conservative
because it ensures convergence of synchronization errors to zero
for ~d ¼ 0. Moreover, the adaptive-control-based synchronization
of FHN neurons proposed in [14,20] does not provide any
indication of stability. Furthermore, the selection of a large
number of control parameters, with the aforementioned meth-
odologies, is difficult.

To confirm the validity of the proposed control methodology,
we select Co¼5. By solving the matrix inequalities of Theorem 2
or 3 for gm¼0.2, c1¼1 and c2¼0.1, we obtain

P¼

4:6333 0:1665 �0:1639 0:9945 �0:0246 0:0246

0:1665 4:6298 0:1614 �0:0248 0:9946 �0:0247

�0:1639 0:1614 4:6262 0:0250 �0:0250 0:9948

0:9945 �0:0248 0:0250 6:2878 0:7104 �0:7109

�0:0246 0:9946 �0:0250 0:7104 6:2890 0:7115

0:0246 �0:0247 0:9948 �0:7109 0:7115 6:2902

2
666666664

3
777777775

,

ð71Þ

m¼ 7:41, g¼ 1:34, e¼ 103:2: ð72Þ
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Fig. 2. Synchronization of three coupled chaotic FHN neurons with uncertain and different gap junctions under disturbance using the proposed adaptive nonlinear control:

(a) state space of x1 and y1, (b) state space of x2 and y2, (c) state space of x3 and y3, (d) state space of x1 and x2, (e) state space of x1 and x3, (f) state space of x2 and x3, (g) state

space of y1 and y2, (h) state space of y1 and y3 and (i) state space of y2 and y3.
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Fig. 2 shows the results, so obtained, by utilizing the proposed
adaptive control. The initial condition of r̂ is taken to be zero,
and Dg12¼0.1, Dg13¼0.14 and Dg23¼0.18. The disturbances are
taken as

d1 ¼ 0:02sinðtÞ,

d2 ¼ 0:02sinð1:1tÞ,

d3 ¼ 0:02sinð1:2tÞ: ð73Þ

It is evident that all three of the coupled chaotic FHN neurons
are synchronized for identical behaviors because the plots in
Fig. 2(d)–(i) make straight lines having slope 1 passing through
the origin, which shows the robustness in the presence of
disturbances and parametric uncertainties.
6. Conclusions

This paper discussed the synchronization of three coupled
chaotic FHN neurons, in which one of them was considered as the
master and the other two as slave neurons. The strengths of gap
junctions between the neurons of each connection were assumed
different and uncertain. A new L2 gain reduction criterion from input
to output of a MIMO system with non-zero initial condition was
established and was effectively used for synchronization of FHN
neurons under L2 norm bounded disturbance. Robust nonlinear/
adaptive control laws for synchronization of FHN neurons were
developed. The developed control laws are simple in implementa-
tion, avoiding additional measurements for recovery voltages and
reducing parameter tuning efforts. The simulation results demon-
strated the success and effectiveness of the overall scheme. The
present work can be extended to the synchronization of a network
of coupled FHN neurons with uncertain and different gap junctions.
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